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We describe an interactive computer program to trace solutions of systems of nonlinear 
algebraic equations and illustrate its application to solve several diflicult problems. Turning 
points and bifurcations are located and solution branches are identified and traced interac- 
tively. Of special interest is its application to study solutions of large, sparse systems of non- 
linear equations that result from the discretization of boundary value problems. Such systems 
arise in the description of physical, biological, and chemical phenomena. As an example, we 
show a model of urine formation in the mammalian kidney [13], where path-following in a 
subspace makes tracing the solution surface possible. I(: 1986 Academic Press, Inc. 

1. INTRODUCTION 

CONKUB permits the study of relatively large systems of nonlinear algebraic 
equations, F(x, a) = 0, with vector of functions F, unknowns x and parameters CI. 
Such systems often arise from the discretization of nonlinear differential equations 
that describe physical, biological, and chemical phenomena. An example is the mul- 
tipoint boundary value problem described by Mejia and Stephenson [ 131. We wish 
to study such a system of convection-diffusion equations as a function of individual 
membrane parameters because, in general, there exist multiple solutions to these 
equations, and their number and time stability changes with variations in the 
parameters [ 141. 

CONKUB consists of 

(1) a driver that controls program flow, allowing (and prompting) the user to 
set data, parameters and program function interactively; 

(2) a path-following procedure to compute points along a solution curve of 
an underdetermined system of equations; 

(3) a procedure to identify and record turning and branch points. 

The path-following procedure is based on methodology due to Keller [lo] and 
KubiEek [ll]. Turning points and simple bifurcations are treated as by Crandall 
and Rabinowitz [5], and Bunow and Kernevez [2]; a scheme for the treatment of 
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multiple branching is also given. Methodology for following solutions to nonlinear 
systems has also been described, for example, by Chow, Mallet-Paret, and 
Yorke [3], Peitgen and Priifer [20], Watson [28], Allgower and Georg [l], More 
and Cosnard [17], Rheinboldt [22], Georg [7], Peitgen and Schmitt [21], Rhein- 
boldt and Burkhardt [23], Morgan [19], and Kearfott [9]. Algorithms for con- 
tinuation of solutions include those by Jiirgens, Peitgen, and Saupe [S], More and 
Cosnard [18], Watson and Fenner [29], and Rheinboldt and Burkhardt [24]. A 
computer program for the bifurcation analysis of autonomous systems of ordinary 
differential equations has been developed by Doedel [6], and a recent version 
permits a limited bifurcation analysis of algebraic systems. 

To use CONKUB the user provides a subroutine to evaluate the functions F and 
approximations to the Jacobian and Hessian matrix when needed. CONKUB then 
facilitates solution in several ways: 

(1) Calculation is interactive, so that the result of a command may be con- 
sidered before the next command is issued. 

(2) The choice of the parameter (or unknown) to be varied at any step is 
usually made by CONKUB, but may be specified by the user. 

(3) Solution may proceed in either a positive or negative direction in 
the variable being followed. Hence at any step one may proceed in the current 
direction, turn, or target to a solution with a given value of this variable. A list of 
commands and their description is given in Appendix A. 

(4) Control parameters and bounds set by the user may be viewed and 
modified during a calculation. 

The computer program, which consists of approximately 2000 FORTRAN 
statements, will appear elsewhere and is available from the author upon request 
(preferably via computer mail to Mejia @ MIT-MULTICS.ARPA). 

In Section 2 we describe the path-following algorithm used and the treatment of 
turning points and bifurcations. In Section 3 we describe a method for path-follow- 
ing in a subspace that we use to treat large, sparse problems. In Section 4 we give 
three examples that illustrate the method. The first example illustrates the use of 
CONKUB to follow a curve loosely sometimes (to reduce computation) and very 
closely other times (to obtain a solution accurately). Appendix C shows how this is 
done. The second example illustrates the ability to identify and trace multiple 
tangential arcs. The third example shows the ability to trace solutions for a 
relatively large problem that has been partitioned as shown Section 3. Here the 
method is used to obtain solutions for the kidney model described in Appendix B. 

2. CONTINUATION METHOD 

Given a system of nonlinear algebraic equations 

F(x,cr)=O, F: R"xRY--tRm (2.1) 
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with unknowns x, parameters CI and F sufficiently smooth, we use the assumed con- 
tinuity and differentiability of F in x and x to derive the differential equations 

$+(F,)$=O, x(aO) =x0, 
I / 

(2.2) 

with F, = aFilaxi, aqaa,= (aF,/aa,,..., aF,la#, 1 d i,jdm, 

F(x’, a’) = 0, 1 <I<<, and ctk fixed for k #I. 

If F, is nonsingular in a neighborhood of (x(cr*), a*), then the vector X(CC*) 
obtained by integrating Eqs. (2.2) is a solution of Eqs. (2.1). However, when F, is 
singular, which occurs at a turning or branching point, or when it is nearly 
singular, this scheme fails. To avoid this problem and to maximize numerical 
stability, we use an algorithm due to KubiEek [ 111 to exchange the role of ~1, and a 
dependent variable in order to solve Eqs. (2.1) for (x, a[). The algorithm is as 
follows: Parametrize with respect to the arc length s of the solution locus and dif- 
ferentiate F with respect to s to obtain the system of equations 

$= f aFi dxj I al;, da, 
,=,axj ds a&G=" 

i= 1,2 ,...., m, 1 <I<q. (2.3) 

The parameter s is determined as arc length along the solution curve in R”‘+ ’ by 
the equation 

{, (fg’+($g’= 1. (2.4) 

Equation (2.3) may be considered as a system of m equations in the m + 1 
unknowns x,, x2 ,..., x,, CC,, and the system may be solved with respect to any one 
of the variables. Let xk be the independent variable, and let the matrix 

r, = 

aF, aF, dF, aF, - . . - . . . - 
ax, ax,-, axktl ax,+, 

aF, ,.. aFv, aFm . . aFm 
ax, aXk-, h+, ax,+, ! (2.5) 

be nonsingular, where we have written x,+ 1 = ~1, for consistency. We can then solve 
the system (2.3) to obtain the equations 

f&~, i = 1, 2 ,..., k - 1, k + 1 ,..., m + 1. (2.6) 
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Substitution of (2.6) into (2.4) yields the result 

(2.7) 

with the sign of (2.7) chosen to preserve the orientation along the curve. 
Equations (2.6) and (2.7) are integrated explicitly using a variable order 
Adams-Bashforth multistep method, and the truncation error incurred is corrected 
by applying Newton’s method to remain within a specified distance of the solution 
curve. 

At each value calculated along the solution curve a change of sign (or a change 
of direction near zero) in the determinant of F, indicates the possible existence of a 
singularity. We use bisection to obtain (x*, g*) such that det F,(x*, cc*)=O. Other 
criteria are given by Allgower and Georg [ 1 J, Jiirgens et al. [S] and Moore and 
Spence [ 161. 

Turning points are thus readily identified. Our technique for identifying and trac- 
ing arcs at branch points is based on that of Crandall and Rabinowitz [4, 51, 
Keller [lo] and the implementation of Bunow and Kernevez [2]. A treatment of 
multiple bifurcations is given by Kearfott [9]. Our approach has been to treat all 
bifurcation points as if simple. 

Let the dimension of the null space of F, at (x*, c(*), dim N(F,*)= 1, then 
N((F*)*)=span $, and IIC/TF,,I <S with 6 small indicates (x*, a*) is a bifurcation 
point. Since we know the tangent of the original branch at a simple bifurcation, we 
use the bifurcation condition, F~,E R(FF), to obtain the tangent of the bifurcating 
branch. A small step in each direction yields points that are corrected onto the 
bifurcating branch [2] using Newton’s method. At multiple branch points we do an 
interactive search. 

3. PATH-FOLLOWING IN A SUBSPACE 

It has previously been shown [ 12, 131 that certain multipoint boundary value 
problems can be discretized and partitioned for iterative solution (see Appendix B 
for an example). Consider such a system of differential equations which has been 
discretized using finite differences to form a set of nonlinear algebraic equations 

F(Y; a) = 0, F: R”+mxRY+R”+“, (3.1) 

with unknowns y and parameters ~1. Equations (3.1) may be partitioned and written 
as 

F,(Y,, YM; a) = 0, F,: RnifmxRq--,Rni, 

I = 1, 2,..., L, n/3 3, 

F,(Y,, ~z,..., YL, Y,,.,; a) = 0, F,: R"+m~RY+Rm, 
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(3.2) 

with vectors Y/E R”! yM E R” and M = (a’, a* ,..., LY”) E Rq. 
To obtain solutions of Eqs. (3.1) as a function of a model parameter cth, we solve 

the analog of Eqs. (2.3) and (2.4); namely, 

aF 
dGlh 

“dh+Z >j‘po, 
M 

IliMll 2 + (6”)’ = 1, (3.3) 

F,(Y~? Y M;a)=o, I= 1, 2 )...) L, 

with initial conditions y(O) = y”, ~(0) = LX’ and for F(y”; a”) = 0. Recall that s has 
been defined as arc length so that yM = yM(s), ah = a’(~) and oih = dcxh/ds. 

Now if (y(s), a(s)) is a solution of (3.3) then for each s (y(s), a(s)) solves (3.1). 
Conversely, if (y(s), a(s)): s, < s < sb is a branch of solutions of (3.1) (i.e., (y(s), CL(S)) 
is not an isolated solution), then (y(s), a(s)) solves (3.3) with suitable initial con- 
ditions. 

Suppose that (y^; 6) is a turning or branching point of (3.3) so that 
det{(aF,,,/ay,)(y^; 6)) = 0. We exchange the role of a dependent variable yh with 
the parameter ah, so that for some j, 1 <<j < m, 

is invertible. In this manner we proceed along a path on the solution surface of (3.3) 
and hence of (3.1). Variation of h, 1 < h d q, permits study of the solutions as a 
function of each of the parameters a. 

4. EXAMPLES 

The first example is due to Watson [28]. Consider the homotopy map 

r(u, a) = af+ (1 - a)(u - u”) (4.1) 

starting at (u”, 0) and follow the zero curve until a = 1. Letf: R3 + R3 be defined by 

and r” = 0. 
Figures 1, 2, and 3 show each component of u plotted against the parameter. 

Note the four turning points for 0 < a d 1, and that large steps are taken for most of 
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FIG. 1. The first component c, of the solution of Eq. (4.1) is plotted as a function of the parameter. 

the trajectory. Only near CI = 1 are small steps required. A portion of the log of the 
session to obtain these figures is given in Appendix C. It includes the initial guess 
and bounds specified, the solutions calculated and interactive viewing and changes 
of parameters. 

3.0 

0.0 0.2 0.4 0.6 0.8 I .o 

FIG. 2. The second component of u is plotted versus the parameter. Note the abrupt turn at 
ci. k 0.67. 
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FIG. 3. The third component of the solution is plotted against the parameter. 

In the second example due to Kearfott [9] we consider the map 

r-(x, c1) = ag(x) + (1 - c() go(x). (4.3) 

g: R3 -+ R3 is defined by g(x)= Ax-f(x), and go: R’+ R3 is defined by 
g”(x)= -Ax forf,=x;7, i= 1,2,3, and 

A = 16 i-t 1; -n). (4.4) 

Figures 4 and 5 show the four solution arcs that intersect at c( = 0.5. We start at 
solution (0, 0, 0,O) and proceed to identify and trace the tangent solutions by trac- 
ing each branch detected. A rigorous, more time consuming procedure might be 
invoked instead (see for example [6, 9, or 203). 

The third example, due to Mejia and Stephenson [ 151, is a model of solute and 
water flow in the mammalian kidney that is described in Appendix B. The dis- 
cretized model consists of several hundred equations whose solutions we seek as a 
function of membrane parameters. Continuation of the solution is carried out in a 
subspace with dimension m = 53 using the procedure described in Section 3. 

Figure 6 is a schematic diagram of the model. Figure 7 shows the total urine con- 
centration (the outflow of tube CD in Fig. 6) as a function of the maximum rate of 
salt transport out of the thick ascending limb of Henle (tube AHL in the outer 
medulla) of the long nephrons. Note that the hysterisis loop traced by the concen- 
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0.0 I 
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Xl 

FIG. 4. The parameter is plotted versus the first component of the solution of Eq. (4.3). A graph of 
the third component .x3 is identical, thus not shown. 

tration consists of two time stable branches connected by an unstable one. In 
general, we study the solution surface as a function of key membrane parameters as 
suggested by experiments and the developing theory of the countercurrent concen- 
trating mechanism for urine formation. 

0.6 . 

ALPHR 

0.4 - 

0.2 

0.0 
-10.0 -6 .O -2 .o 2.0 6.0 10.0 

X2 

FIG. 5. The parameter is graphed against the second component x2 of the solution 
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FIG. 6. A schematic diagram of a model of the mammalian kidney described in Appendix B is 
shown. Open arrows indicate water movement; solid arrows signify salt movement, and slashed arrows 
signify urea movement. 
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FIG. 7. The total concentration of the urine is shown as a function of the maximum rate of salt 
transport from the thick ascending limb of Henle in the long nephrons. The dashed part of the curve is 
the time unstable middle branch. 
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APPENDIX A 

A description of each of the commands available in CONKUB, as well as a 
description of parameters that may be set by the user and their default values, is 
given in Figs. Al and A2. 

APPENDIX B 

Consider a model of the mammalian kidney [25,26] consisting of many 
nephrons. Each nephron is modeled as a separate nephrovascular unit [ 141 with 
water and solute exchange between nephron and vascular tubules through a com- 
mon interstitial space. See the diagram shown in Fig. 6. The differential equations 
that describe water and solute movement in each tubular segment [ 131 are as 
follow: 

$ CikFi, -D, - 
( 

acik 

> 

a 
ag + J& + z (A iCik) = A i.rik (solute conservation), (B.1) 

~+Ji,.$=o 
at 

(volume conservation), P.2 1 

%+RiFio=O (equation of motion), (B.3) 

for 0 d i < Z tubes, 1 d k 6 K, solutes, where 5 is the axial distance along the tube; 
0 < 5 < li < 1; Zi is the length of the ith tube; 0 < C, is the concentration of the kth 
solute in the ith tube; Fi, is the axial volume flow; Djk is the diffusion coefficient of 
the kth solute in the ith tube; Jjk is the transmembrane solute flux; t is time; A, is 
the cross-sectional area of the tube; s,~ is the average net rate at which the kth 
solute is being produced or destroyed by physical or chemical reaction; Ji, is the 
transmembrane volume flux (which is assumed to be approximately equal to the 
water flux); Pi is the hydrostatic pressure; and R, is the resistance to flow. 

Transmural volume and solute flux is defined as follows: 

J;t,=hi” CRT(C,I,-C,)~ik+P,-Py 5 
k 1 

and 

J;k = h,(Cik - Cq/c) + (1 - oik) J,,(Cik + C,,)/Z 

aik 

+ 1 + b&Y,, 

(B.4) 

(B.5) 
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*“*****I**lxxYY****xllYXlXYIIXllYYYIIYYY*”********************~***~* 
CONKUB ALGORITHM FOR PATH FOLLOWING VERSION 042683 

****L*X*Y***********~~~*******“~****~****~**~****~***********~**~*~* 

YOU ARE IN INITIALIZAl 
VALID COMMANDS ARE: 

58 PB NE 

2 
PV 
PN fl: 

RV CP ST 
GE nT C-M 

.ION MODE. 

GO 
SK 

WHEN iHEY ARE‘NEEDED’.’ YOU WILL BE ASKED FOR VALUES FOR: 
NVBL---NUMBER OF VARIABLES 
NPAR---NUMBER OF PARAMETERS 

TYPE XX? FOR TNFO ON COMMAND XX. 

YOU ARE IN COMMAND CONTROL MODE. VALID COMMANDS ARE: 
LS---LEAVE THE VARIABLE AS IT IS 
AI---ASSIGN EACH VARIABLE(I) INDIVIDUALLY 
SB---INFORMATION ON VARIABLES AND DEFAULT VALUES 
ST---RETURN TO INITIALIZATION MODE OR RUN NODE. 
ONCE IN THE AI MODE: 

LS---LEAVE THE VARIABLE THE SAME 
ST---GO ON TO THE NEXT VARIABLE. 

ENTER THE VALUE ITSELF IF ALL VARIABLES(I) ARE TO HAVE 
THE SAME VALUE. 

YOU ARE IN RUN MODE. 
VALID COMMANDS ARE: 

SB PB ME GO 

E F;: K 
1U 

SK CP ST :p’ 
DT CM ov 

TYPE XX? FOR INFO ON COMMAND xx 
SET VECTOR---SV 

YOU WILL BE ASKED TO INPUT INITIAL VALUES FOR THE VARIABLE 
VECTOR X(I) AND THE PARAMETER VECTOR PAR(I). 

READ VECTOR---RV 
READ IN THE START VECTDRS FROM A FILE. YOU WILL BE ASKED FOR THE 
FILE NAME. THE FIRST TWO VALUES RUST BE NVBL. THEN NPAR. ONE PER 
LINE, FORMAT 16. VECTOR VALUES WILL BE READ 5 PER LINE, FORMAT 
012.4,2X. CONTROL COMMANDS ARE NOT VALID--INCLUDE ALL VALUES. 

SET BOUNDS---SB 
YOU WILL BE ASKED TO INPUT VALUES(FDRMAT D10.4.16 OR L51 FOR: 

HH(I)---INTEGRAION STEP ALONG THE ARC LENGTH OF THE SDLUTION 
LOCUS. ---DEFAULT .t 

HNAX(I)---APPROXIMATE UPPER BOUNDS FOR INCREMENT OF X(I) IN ONE 
INTEGRATION STEP. --DEFAULT 1. 

EPS---ACCURACY DESIRED IN NEWTON ITERATIONS. CONVERGENCE CRITERION 
IS: SUM OF THE ABSOLUTE VALUE OF THE CHANGE IN EACH 
CORPDNENT OF X IS <= EPS. ---DEFAULT .OOO! 

NCORR---THE NUMBER OF NEWTON CORRECTIONS TO GET BACK NEAR THE 
CURVE. IF THE CRITERION IS NOT RET, THE STEP SIZE WILL BE 
HALVED AND WILL TRY AGAIN. THIS WILL BE REPEATED NCORR 
TIMES. ---DEFAULT 4 

NDIR(I)---DIRECTION OF CHANGE IN X(I) 
l---POSITIVE -I---NEGATIVE. ---DEFAULT 1 

XUPP(I)---UPPER BOUNDS ON X(I). ---DEFAULT 40.0 
XLOW(I)---LOWER BOUNDS ON X(I). ---DEFAULT -40.0 
FACT---BIFURCATION CRITERION. CRITERION IS THAT THE INNER PRODUCT 

OF PSI1 AND THE PARTIAL DERIVATIVE OF THE FUNCTION, F. WITH 
RESPECT TO A PARAMETER IS <= FACT; WHERE THE SPAN OF PSI1 
IS THE NULL SPACE OF THE DERIVATIVE OF F WITH RESPECT TO X. 
ALSO, SIZE OF STEP TAKEN ON EITHER SIDE OF A BIFURCATION IN 
SEARCH OF BIFURCATING BRANCH. 
---DEFAULT ,001 

BSW---SET TRUE FOR BIFURCATION TEST ON CHANGE OF DIRECTION; 
SET FALSE FOR BIFURCATION TEST ON CHANGE OF SIGN ONLY. 
---DEFAULT FALSE 

LPRNT---SET TRUE TO PRINT RESULT OF EACH NEWTON ITERATION. 
---DEFAULT FALSE 

THE ITN PARAMETER BOUND WILL BE READ IN AS THE BOUND FOR X(NVBL+I) 

READ BOUNDS---RB 
READ IN THE BOUNDS FROM A FILE. YOU WILL BE ASKED FOR THE FILE 
NAHE. THE FIRST TWO VALUES MUST BE NVBL AND NPAR, ONE PER LINE. 
FORMAT 16. ALL INTEGER VALUES WILL BE IN FORMAT 16; REAL VALUES WILL 
BE IN FORMAT D12.4; LOGICAL VALUES IN L5. ENTER REAL VECTOR VALUES 
5 PER LINE, INTEGER VECTOR VALUES 10 PER LINE. 2X IN BETWEEN VALUES. 
ENTER SCALAR VALUES ONE PER LINE. CONTROL COMMANDS ARE NOT VALID--- 
INCLUDE ALL VALUES. VALUES WILL BE READ IN THE SANE ORDER AS SB. 

HELP---NE 

STOP---ST 
IF IN INITIALIZATION MODE, COMPLETES THE RUN AND RETURNS TO THE 
MONITOR IF IN RUN MODE, RETURNS TO INITIALIZATION HODE. 

FIGURE Al. 
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PRINT BOUNDS---PB 
PRINT OUT THE CURRENT VALUES OF THE BOUNDS. 

PRINT VECTOR---PV 
PRINT OUT THE VECTOR OF VARIABLES AND PARAMETERS 

PRINT NORM---PN 
PRINT OUT THE NORM OF THE VARIABLE VECTOR AND PRINT OUT THE 
PARAMETERS THAT ARE BEING FOLLOWED 

IN 1NI::ALIZATIDN MODE DOES INITIAL NEWTON ITERATIONS TO GET NEAR 
A ROOT. 
IN THE RUN MODE---GO NP--- CALCULATE THE NEXT NP POINT(S). 

INITIAL DEFAULT FOR NP IS 1. THEN DEFAULT IS PREVIOUS NP. 

RESTART---RE 
READ IN A PREVIOUSLY STORED POINT CREATED BY THE MEMORY COMMAND. 
YOU WILL BE ASKED FOR THE FILE NINE. 
IF YOU WISH TO GET OUT OF THIS COMMAND, INPUT ST. 

MEMORY---TIE 
STORES THE CURRENT POINT AND STATUS TN A FILE WITH THE NAME OF YOUR 
CHOICE. IF YOU WISH TO GET OUT OF THIS CDNMAND, INPUT ST. 
A MEMORY FILE WILL AUTOMATICALLY BE PRODUCED FOR POINTS ON 
BIFURCATED BRANCHES. 

CHANGE PRINT---CP 

YOU WILL BE GIVEN THE OPTIDN TO PRINT OUT THE NORM, TNE VECTOR, 
OR BOTH. 

SET FOLLOWING PARAMETERS---SF NPF 
SPECIFY WHICH PARAMETERCS) TO FOLLOW, WHERE NPF ( <=5 115 THE NUMBER 
OF PARAMETERS. INDICES OF THE FOLLOWING PARATIETERS WILL BE 
STORED IN IFOLOCI). IF IFOLO IS NOT INITIALIZED ALL PARAMETERS 
MAY BE FOLLOWED. IF NPF-NPAR IFDLO WILL BE SET AUTOMATICALLY. 
---DEFAULT VALUE FOR NPF = 1. 
LS CLEAVE SAME) AND STCSTOP) ARE VALID, HOWEVER THEY WILL BE 
IGNORED IF AN ERROR OCCURS. 

COMMENT---CM NL 
INSERT A COMMENT IN THE SESSIDN LOG, WHERE NL IS THE NUMBER OF LINES. 
EACH LINE MAY BE 75 CHARACTERS LONG.---DEFAULT FOR NL q 1. 

DATA---DT 
INPUT REAL VALUES FOR RDATAClT-RDATAO), AND INTEGER VALUES FOR 
IDATA(IDATICS). FOR OPTIONAL USE IN THE FUNCTION SUBROUTINE. 
TO USE THESE ARRAYS, THE FUNCTION SUBROUTINE MUST HAVE THE STATEWENT: 
COMMDNIIDATA~RDATAC5~,IDATAC5) 

TURN---TV HP 
FOLLOW THE PATH IN THE OPPOSITE DIRECTION. 
NP IS THE NUMBER OF POINTS. ---INITIAL DEFAULT = 1. THEN DEFAULT 
BECOMES THE PREVIOUS VALUE FOR NP. 

LEVEL STEPS---LE NP 
FOLLDW X(K) IN LEVEL STEPS ALDNG THE CURVE. 
HP IS THE NUMBER OF POINTS. ---INITIAL DEFAULT = Ii SUBSEQUENTLY THE 
DEFAULT IS THE PREVIOUSLY USED VALUE; 
INITIAL DEFAULT ON INCREMENT = NMAX; 
INITIAL DEFAULT ON ITERATIONS = 10. 
IF K CHANGES OR ANY ERROR OCCURS. LEVEL MODE WILL STOP. 

TARGET POINT---TP 
FIND THE SOLUTION FOR A PARTICULAR VALUE OF X(K). YOU WILL 
BE ASKED FOR THE VALUE. TRGPT. IF K CHANGES OR ANY ERROR OCCURS, 
TARGET PDINT MODE WILL STOP. 

OUTPUT CURRENT VECTOR---DV 
STORES THE CURRENT POINT IN A BINARY FILE WITH A NAME OF YOUR CHOICE. 
EACH RECORD MAY BE READ AS FOLLOWS: 

READCFILENAVE7CXCI),I=l,NXTOT) 
WHERE NXTOT=NVBL+NPAR. THIS IS USEFUL FOR SAVING DATA FOR PLOTTING. 

SET K---SK 
RESTRICTS FOLLOWING TO VARIABLE K, FOR 0 < K <= NXTOT. 
YOU WILL BE ASKED FOR K. 
K q 0, FREES CONKUB TO SELECT K (DEFAULT). 
TURNING POINT OR BIFURCATION CALCULATIONS WILL FREE THE SELECTION OF K. 

FIGURE A2 
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for 16 i 6 Z, 16 k < K, where h, is the hydraulic permeability coefhcient of the ith 
tube for the kth solute; hik is the solute permeability of the ith tube for the kth 
solute; R is the gas constant; T is the absolute temperature; subscript q indicates an 
interstitial variable (for cortex q = c and for medulla q = 0); (Tag is the Staverman 
reflection coefficient of the wall of the ith tube for the kth solute. The last term in 
Eq. (B.5) defines the metabolically driven transport, which is assumed to obey 
Michaelis-Menten kinetics; aik is the maximum rate of transport, and bi, is the 
Michaelis constant. Tubes i, 1 < id Z, refer to the nephrons and vasculature of the 
model. In general, we assume that sjk = 0, for all i and k; that Ai = constant, for all 
i; and that D, = 0 for 1 6 i 6 Z and all k. 

TUbeb h, 

TABLE BI 

Normalized Parameters” 

R( x 104) CJ UP h, 4 

G 
PGC 
DVRl 
DVR2 
CAVR 
AVRl 
AVR2 
BC 
PT 
DHL 
AHLl 
AHL2 
DNl 
DN2 
CD 
RP 

1400 
300 
100 
100 
100 
100 
100 

0 

50 
0 
0 
0.2 
0.2 
0.44 
0.05 

2 0 1 1 1 
28.5 0 1 4 4 

2000 0 1 1000 1000 
28.5 0 1 1000 lOOil 

4.9 0 1 100 100 
2000 0 1 1000 1000 

24.5 0 1 1000 1000 
0 1 0 0 
7 - - 

10 1 0 0 
10 1 0.05 
10 1 - 0.05, 0.85’ 
6 1 0 0 
6 1 0 0 
6 1 0 0, 0.02d 
0 1 0 0 

R, = 10.5 x lO-4 
R, =O.l x lO-4 
R,=250x lO-4 

Dos=l.OxlO-~ 
DO” = 1.0 x 10-j 

B = 0.5 

a = 1.3, b=O.l 
a = 0.6,0,’ b = 0.1 
a = 0.45, b= 1.0 
a = 0.3, b= 1.0 

E=O. 

Oh,, hydraulic permeability; R, resistance to flow; u, Staverman reflection coefficient for filtered 
solutes; up, reflection coefficient for large solute not filtered; h,, salt permeability; h,, urea permeability; 
R,, flow resistance agerent to glomerulus; R,, flow resistance efferent to glomerulus; R,, resistance to 
flow in the interstitium; D,, diffusion constant for salt in the interstitium; B, fraction of filtrate reabsor- 
bed in the proximal tubule; a, maximum rate of transport; b, Michaelis constant; i?, fraction of collecting 
duct outflow entering renal pelvis, 

’ G, glomerulus; PGC, post glomerular capillary; DVRl, descending vas rectum for first (cortical) 
nephrovascular unit; CAVR, cortical ascending nephrovascular unit; AVR2, ascending vas rectum for 
second Cjuxta-medullary) nephrovascular unit; BC, Bowman’s capsule; PT, proximal tubule; DHL, 
descending loop of Henle’s limb, AHL, ascending loop of Henle’s limb; DN, distal nephron; CD, 
collecting duct; RP, renal pelvis. 

‘The first value refers to the outer medulla where 0 6.x < 0.5; the second refers to the inner medulla, 
where 0.6 < x < 1. For 0.5 < x < 0.6 the value varies linearly. 

d The first value holds for 0 ,< x < 0.4; the second holds for 0.6 <x < 1. For 0.4 < x < 0.6 the value 
varies linearly. 

5X1,63.:1-6 
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TABLE BII 

Normalized Boundary Values 

CNaCll arterial 
CUreal arterial 
[Large proteins1 arterial 
P artend 
P venous 
Pbladder 

1.0 
0.05 
0.0038 
1.3 x 10 -* 
1.0 x 10-j 
1.44 x 10-x 

In the medullary region, water and mass conservation require that 

J,“(5) = -c Ji”(i’) 

and 

JOdO = - 1 Jik(O 

for 0 6 5 < 1, 1 6 k < K. In the cortex 

and 

(B.6) 

03.7) 

where V, is the volume of the cortical interstitium and 0 <k <K. 
Equations (B.lk(B.3) are discretized using a scheme that is centered in space 

and backward in time [13]. The interstitial variables: Pg, Cgk and Fgu; the 
boundary values for each nephron: FGu( 1 ), P,, and FDvRu( 1); plus PC-( 1) and 
F,,,(n, + 1) are the coordinates used for continuation. A connected component of 
steady state solutions is shown in Fig. 7, the values of the model parameter used are 
given in Table BI, and Table BII contains the boundary data for this model that 
has a ratio of three short nephrons for every long one. 

APPENDIX C 

Figures Cl-C3 illustrate a portion of the session dialog for the solution of the 
first sample problem given in Section 4. For brevity, we show the calculation of the 
first three sample points of Figs. l-3 beginning at ct = 0 and the computation at the 



CONVERSATIONAL PATH-FOLLOWER 

15:39 13-Feb-84 
******************************************************************** 

CONKUB ALGORITHM FOR PATH FOLLOWING VERSION 122083 
******************************************************************** 
TYPE HE FOR HELP. 
CM 
r%f%lJsa the SV command to enter initial values for the variables and parameters. 
sv 
x = 

o.oooooooD+oo 0.00000000+00 0.00000000+00 

PAR = 
0.00000000+00 

CM 
****Use the SB command to initialize the boynds and control parameters. 
SB 
HH = 

2,5000000D-01 2.5000000D-01 2.5000000D-01 1.00000000-01 

HMAX = 
2.50000000-01 2.5000000D-01 2.50000000-01 

EPS = 1.00000000-04 
NDIR = 

1 1 1 1 

XUPP = 
l.0000000D+Ol 1.0000000D+01 l.OOOOOOOD+Ol 

XLOW = 
-1.0000000D+00 -1.0000000D+00 -1.0000000D+00 

FACT = l.OOOOOOOD-03 
BSW = F 
LPRNT' F 
CM 
MMMRUse the ME command to save the initial data. 
MF .- 
START 
CM 
MMtrMBegin the computation. 
GO 
THERE ARE 3 VARIABLES 
THERE ARE 1 PARAMETER(S) 
YU c ,... 

2.50000000-01 2.50000000-01 

HMAX = 
2.50000000-01 2.5000000D-01 

EPS = 1.0~000000-04 
NCORR= 
NDIR = 

1 1 I 1 

XUPP = 
1.0000000D+01 1.0000000D+01 

XLOW = 
-1.00000000+00 -1.0000000D+00 

FACT q 1.00000000-03 
RSWE F __.. 
;pFg;: F 1 
RDATA= 

O.OOOOOOOD+OO 0.0000000D+00 

IDATA= 
0 0 0 0 

x = 
O.OOOOOOOD+OO 0.0000000D+00 

PAR = 
0.0000000D+00 

2.5000000D-01 

2.5000000D-01 

1.0000000D+01 

-1.0000000D+00 

O.OOOOOOOD+OO 

0 

0.0000000D+00 

3.00000000-01 

l.l000000D+00 

-l.OOOOOOOD-01 

1.0000000D-01 

3.0000000D-01 

1.10000000+00 

-1.00000000-01 

0.0000000D+00 0.0000000D+00 

81 

FIGURE Cl. 
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'"EC;::;;" NORM IS: 0.0000D+OO; PARC o= 0.00000+00 
: NEWTON ITER 

CONKUB: NEWTONS CONVERGED; 
1 E:f =3 O.OOOD+OO, IIXneu-Xoldll = O.OOOD+OO 

CM 
xN*rS~vs d&s in s form suitable for plotting using the OV command. 
ov 
LTWOV 
CM 
+rlrContinue the calculation. 

?[IEC;;::;R NORM IS: 2.05440-01; PARC l)= 5.5194D-02 
NEWTON ITER 

CONKUB: N;WTONS CONVERGED; 
3 ';F =, 6.64JD-07. I IXnw-Xoldll = 5.6100-07 

DET- 0.0898x2YN 4 K- 1 
PV 
x q 

1.4111807D-01 1.18531710-01 9.06838250-02 

PAR = 
5.51942411)-02 

i% 
rlrN+Changs the form of the output typed at the terminal using the CP command. 

4: 
;;NNGantinua tha calculation. 

x 1 
4,3382268D-01 2.2020534D-01 1.09041430-01 

PAR = 
2.10591000-01 

CONKUB : NEWTON ITER 4 ERR = 3.362D-01, IIXnw-Xoldll = 4.6230-OB 
CONKUB: NEWTONS CONVERGED; K= 1 

DET' 0.124112XX 4 K= 1 

(For brevity we omit most of the computation and 
show the last two points computed on the curvs.1 

;o 1 

3.747076lD-01 2.5266944D+OO 4.324849aD-01 

PAR = 
9.9995907D-01 

CONKUB : NEWTON ITER 1 ERR = 7.8290-16. IIXnw-Xoldll = 3.OalD-16 
CONKUB: NEWTONS CONVERGED; K= 3 

DET= 0.1323r2%Z 4 K- 3 

% 
NNNNLook at the current bounds using the PB command mm 
%ERE ARE 3 VARIABLES 
THERE ARE 1 PARAMETER(S) 
HH = 

1.0000000D-03 l.OOOOOOOD-03 l.OOOOOOOD-03 
s 

HMAX = 
1.00000000-04 1.000000OD-04 1.00000000-04 

EPS = 1.0000000D-01) 
NCORR' 5 

,NDIR q 

- 1 -1 1 1 

XUPP = 
1.000OOOOD+Ol 1.00000000+01 l.OOOOOOOD+Ol 

XLOW = 
-1.0000000D+00 -1.0000000D+00 -1.0000000D+00 

1.0000000D-03 

1.0000000D-04 

1.1000000D+00 

-1,0000000D-01 

FIGURE C2. 
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FACT = l.OOOOOOOD-03 
BSW= F 
LPRNT- F 
IFOLO= 4 
RDATA= 

0.0000000D+00 0.0000000D+00 O.OOOOOOOD+OO 0.0000000D+00 2.5400000D+02 

IDATA= 
0 0 0 0 0 

CM 
rrxxUse the SB command to reduce the step size allowed. 

;; 2 
5.0000000D-04 5.00000000-04 5.0000OOOD-04 5.OOOOOOOD-04 

HMAX = 
5.0000000D-05 5.0000000D-05 5.000000OD-05 5.0000000D-05 

GO 
x 1 

3.7472626D-O! 2.52667680+00 4.32544171)-01 

PAR = 
9.9999732D-01 

CONKUB : NEWTON ITER 2 ERR = 6.387D-16, IIXnsw-Xoldll = 4.7630-16 
CONKUB: NEWTONS CONVERGED; I(= 3 

;I'= 0.1323*21* 4 K= 3 

2: 

FIGURE C3. 

last two points approaching u = 1. See Appendix A for a detailed description of the 
commands and other mnemonics used. 
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