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We describe an interactive computer program to trace solutions of systems of nonlinear
algebraic equations and illustrate its application to solve several difficult problems. Turning
points and bifurcations are located and solution branches are identified and traced interac-
tively. Of special interest is its application to study solutions of large, sparse systems of non-
linear equations that result from the discretization of boundary value problems. Such systems
arise in the description of physical, biological, and chemical phenomena. As an example, we
show a model of urine formation in the mammalian kidney [13], where path-following in a
subspace makes tracing the solution surface possible. 1986 Academic Press, Inc.

1. INTRODUCTION

CONKUB permits the study of relatively large systems of nonlinear algebraic
equations, F(x, a) =0, with vector of functions F, unknowns x and parameters o.
Such systems often arise from the discretization of nonlinear differential equations
that describe physical, biological, and chemical phenomena. An example is the mul-
tipoint boundary value problem described by Mejia and Stephenson [13]. We wish
to study such a system of convection—diffusion equations as a function of individual
membrane parameters because, in general, there exist multiple solutions to these
equations, and their number and time stability changes with variations in the
parameters [ 14].

CONKUB consists of

(1) a driver that controls program flow, allowing (and prompting) the user to
set data, parameters and program function interactively;

(2) a path-following procedure to compute points along a solution curve of
an underdetermined system of equations;

(3) a procedure to identify and record turning and branch points.

The path-following procedure is based on methodology due to Keller [10] and

Kubicek [11]. Turning points and simple bifurcations are treated as by Crandall

and Rabinowitz [ 5], and Bunow and Kernevez [27]; a scheme for the treatment of
67
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68 R. MEJIA

multiple branching is also given. Methodology for following solutions to nonlinear
systems has also been described, for example, by Chow, Maliet-Paret, and
Yorke [3], Peitgen and Priifer [20], Watson [28], Aligower and Georg [1], Mor¢
and Cosnard [17], Rheinboldt [22], Georg [7], Peitgen and Schmitt [21], Rhein-
boldt and Burkhardt [23], Morgan [19], and Kearfott [9]. Algorithms for con-
tinuation of solutions include those by Jiirgens, Peitgen, and Saupe [8], Moré and
Cosnard [18], Watson and Fenner [297], and Rheinboldt and Burkhardt [24]. A
computer program for the bifurcation analysis of autonomous systems of ordinary
differential equations has been developed by Doedel [6], and a recent version
permits a limited bifurcation analysis of algebraic systems.

To use CONKUB the user provides a subroutine to evaluate the functions F and
approximations to the Jacobian and Hessian matrix when needed. CONKUB then
facilitates solution in several ways:

(1) Calculation is interactive, so that the result of a command may be con-
sidered before the next command is issued.

(2) The choice of the parameter (or unknown) to be varied at any step is
usually made by CONKUB, but may be specified by the user.

(3) Solution may proceed in either a positive or negative direction in
the variable being followed. Hence at any step one may proceed in the current
direction, turn, or target to a solution with a given value of this variable. A list of
commands and their description is given in Appendix A.

(4) Control parameters and bounds set by the user may be viewed and
modified during a calculation.

The computer program, which consists of approximately 2000 FORTRAN
statements, will appear elsewhere and is available from the author upon request
(preferably via computer mail to Mejia @ MIT-MULTICS.ARPA).

In Section 2 we describe the path-following algorithm used and the treatment of
turning points and bifurcations. In Section 3 we describe a method for path-follow-
ing in a subspace that we use to treat large, sparse problems. In Section 4 we give
three examples that illustrate the method. The first example illustrates the use of
CONKUB to follow a curve loosely sometimes (to reduce computation) and very
closely other times (to obtain a solution accurately). Appendix C shows how this is
done. The second example illustrates the ability to identify and trace multiple
tangential arcs. The third example shows the ability to trace solutions for a
relatively large problem that has been partitioned as shown Section 3. Here the
method is used to obtain solutions for the kidney model described in Appendix B.

2. CONTINUATION METHOD

Given a system of nonlinear algebraic equations

F(x,2)=0, F R"xR‘—R" (2.1)
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with unknowns x, parameters « and F sufficiently smooth, we use the assumed con-
tinuity and differentiability of F in x and « to derive the differential equations

dx oF _

—— 4+ (F) 1 — (o) = x°
&, (F,) P2, 0, x(a”)=x", (2.2)

with F_ = 0F,/0x;, 0F/0a,= (0F,/da,,..., OF, /00", 1 <i, j<m,

F(x% a®%) =0, 1</<yg, and a, fixed for k#1.

If F, is nonsingular in a neighborhood of (x(a*), «*), then the vector x(a*)
obtained by integrating Egs. (2.2) is a solution of Egs. (2.1). However, when F is
singular, which occurs at a turning or branching point, or when it is nearly
singular, this scheme fails. To avoid this problem and to maximize numerical
stability, we use an algorithm due to Kubicek [11] to exchange the role of «, and a
dependent variable in order to solve Eqgs. (2.1) for (x, «,). The algorithm is as
follows: Parametrize with respect to the arc length s of the solution locus and dif-
ferentiate F with respect to s to obtain the system of equations

ar, 8Fidx,+6F,£z’Ec_,_

— 0
ds  Z 0x;ds Oy ds 7

J

i=1,2,..,m 1<i<q. (2.3)

The parameter s is determined as arc length along the solution curve in R™*' by

the equation
oo (dx)\' [ da\?
- — ] =1 24
L(%) +(Z) 24
Equation (2.3) may be considered as a system of m equations in the m+ |

unknowns x,, x,,.., X,,, @, and the system may be solved with respect to any one
of the variables. Let x, be the independent variable, and let the matrix

(OF  OF OF - oF )
Ox, 0x, | 0x4 4 0X 4 1
r=| : : (25)
oF,, oF,  OF, oF,,
(% a0, O e

be nonsingular, where we have written x,, , , = a, for consistency. We can then solve
the system (2.3) to obtain the equations

dx; . dx;

%—ﬁ,——d-s—, l=1,2,...,k'—1,k+1,...,m+1. (26)
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Substitution of (2.6) into (2.4) yields the result

B0 ) o

s~ i=1
itk

with the sign of (2.7) chosen to preserve the orientation along the curve.
Equations (2.6) and (2.7) are integrated explicitly using a variable order
Adams-Bashforth multistep method, and the truncation error incurred is corrected
by applying Newton’s method to remain within a specified distance of the solution
curve.

At each value calculated along the solution curve a change of sign (or a change
of direction near zero) in the determinant of F indicates the possible existence of a
singularity. We use bisection to obtain (x*, a*) such that det F (x*, a*)~0. Other
criteria are given by Allgower and Georg [1], Jiirgens et al. [8] and Moore and
Spence [16].

Turning points are thus readily identified. Our technique for identifying and trac-
ing arcs at branch points is based on that of Crandall and Rabinowitz [4, 5],
Keller [10] and the implementation of Bunow and Kernevez [2]. A treatment of
multiple bifurcations is given by Kearfott [9]. Our approach has been to treat all
bifurcation points as if simple.

Let the dimension of the null space of F, at (x* a*), dim N(F¥)=1, then
N((F*)")=span ¢/, and lyTF,| < with § small indicates (x*, a*) is a bifurcation
point. Since we know the tangent of the original branch at a simple bifurcation, we
use the bifurcation condition, F¥ e R(F¥), to obtain the tangent of the bifurcating
branch. A small step in each direction yields points that are corrected onto the
bifurcating branch [2] using Newton’s method. At multiple branch points we do an
interactive search.

3. PATH-FOLLOWING IN A SUBSPACE

It has previously been shown [12, 13] that certain multipoint boundary value
problems can be discretized and partitioned for iterative solution (see Appendix B
for an example). Consider such a system of differential equations which has been
discretized using finite differences to form a set of nonlinear algebraic equations

F(y;a)=0, F: R"™ ™xRY—R"™™ (3.1)

with unknowns y and parameters o. Equations (3.1) may be partitioned and written
as

Fynym;2)=0,  F: R""T™xR!—R"
I=1,2,.. L, n =3,
Fo(Pis Y20 Vs Yars @) =0, Fy: R'™™xRY—> R"™,
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L
Y n=n>m, (3.2)
=1

with vectors y,€ R", y,,€ R™ and a = (a!, o%.., a?) e R%.
To obtain solutions of Egs. (3.1) as a function of a model parameter «”, we solve
the analog of Eqs. (2.3) and (2.4); namely,

oF, ., OF,, .
at’ah-'-_a,y_M'yM'—O’
M
19 0l% + (@%)* = 1, (3.3)

Fi(y;, yas;0)=0, I=12.. L,

with initial conditions y(0)=7°, «(0)=a° and for F(y° a®)=0. Recall that s has
been defined as arc length so that y,, = y,(s), «" = a”(s) and &" = du"/ds.

Now if (y(s), a{s)) is a solution of (3.3), then for each s (y(s), a(s)) solves (3.1).
Conversely, if (y(s), a(s)): 5, <s < s, is a branch of solutions of (3.1) (i.e., (y(s), 2(s))
is not an isolated solution), then (y(s), a(s)) solves (3.3) with suitable initial con-
ditions.

Suppose that (f;d) is a turning or branching point of (3.3), so that
det{(0F /0y, )(7; &)} =0. We exchange the role of a dependent variable yJ, with
the parameter o, so that for some j, 1 < j<m,

JF
07 m

a1 52 si—1 gh g7+ gm gl =2
('))M’ IYMV", 7’/’” 9a ’YJ/‘W yeers 'yM’ o4 > od sreey -

is invertible. In this manner we proceed along a path on the solution surface of (3.3)
and hence of (3.1). Variation of h, 1 <h<g, permits study of the solutions as a
function of each of the parameters .

4., EXAMPLES

The first example is due to Watson [287]. Consider the homotopy map
o, a)=af + (1 —a)(v—0°) 4.1

starting at (v°, 0) and follow the zero curve until a = 1. Let f: R* > R® be defined by

3
fe=vr—exp [cos (k Y v,—)], k=1,2,3 (4.2)
i=1

and v°=0.
Figures 1, 2, and 3 show each component of v plotted against the parameter.
Note the four turning points for 0 <a < 1, and that large steps are taken for most of
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FIG. 1. The first component v, of the solution of Eq. (4.1) is plotted as a function of the parameter.

the trajectory. Only near a =1 are small steps required. A portion of the log of the
session to obtain these figures is given in Appendix C. It includes the initial guess
and bounds specified, the solutions calculated and interactive viewing and changes
of parameters.

3.0

v2

o.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
ALPHA

FiG. 2. The second component of v is plotted versus the parameter. Note the abrupt turn at
o = 0.67.
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FiG. 3. The third component of the solution is plotted against the parameter.

In the second example due to Kearfott {9] we consider the map
r(x, a) = og(x) + (1 —a) g°(x). (43)

g:R*> R® is defined by g(x)=Ax—f(x), and g°:R*—> R® is defined by
g(x)= —Ax for fi=x3,i=1,2,3, and

2 -1 0
A=16 -1 2 —1]). (4.4)
0 -1 2

Figures 4 and 5 show the four solution arcs that intersect at o =0.5. We start at
solution (0, 0, 0, 0) and proceed to identify and trace the tangent solutions by trac-
ing each branch detected. A rigorous, more time consuming procedure might be
invoked instead (see for example [6, 9, or 20]).

The third example, due to Mejia and Stephenson [15], is a model of solute and
water flow in the mammalian kidney that is described in Appendix B. The dis-
cretized model consists of several hundred equations whose solutions we seek as a
function of membrane parameters. Continuation of the solution is carried out in a
subspace with dimension m =53 using the procedure described in Section 3.

Figure 6 is a schematic diagram of the model. Figure 7 shows the total urine con-
centration (the outflow of tube CD in Fig. 6) as a function of the maximum rate of
salt transport out of the thick ascending limb of Henle (tube AHL in the outer
medulla) of the long nephrons. Note that the hysterisis loop traced by the concen-
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FiG. 4. The parameter is plotted versus the first component of the solution of Eq. (4.3). A graph of
the third component x; is identical, thus not shown.

tration consists of two time stable branches connected by an unstable one. In
general, we study the solution surface as a function of key membrane parameters as
suggested by experiments and the developing theory of the countercurrent concen-
trating mechanism for urine formation.

0.8}

0.6 {

ALPHRA LS

0.2 {

0.0 s . N "
-10.0 -6.0 ~-2.0 2.0 6.0 10.0
X2

FiG. 5. The parameter is graphed against the second component x, of the solution.
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FiG. 6. A schematic diagram of a model of the mammalian kidney described in Appendix B is
shown. Open arrows indicate water movement; solid arrows signify salt movement, and slashed arrows

signify urea movement.
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FiG. 7. The total concentration of the urine is shown as a function of the maximum rate of salt
transport from the thick ascending limb of Henle in the long nephrons. The dashed part of the curve is

the time unstable middle branch.
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APPENDIX A

A description of each of the commands available in CONKUB, as well as a
description of parameters that may be set by the user and their default values, is
given in Figs. Al and A2.

APPENDIX B

Consider a model of the mammalian kidney [25,26] consisting of many
nephrons. Each nephron is modeled as a separate nephrovascular unit [14] with
water and solute exchange between nephron and vascular tubules through a com-
mon interstitial space. See the diagram shown in Fig. 6. The differential equations
that describe water and solute movement in each tubular segment [13] are as
follow:

0 oC,
—a-E<CikFiu—Dik acgk>+‘,ik+§t(AiCik):Aisik (solute conservation), (B.1)
oF. . .
F, +J,+ o4, =0 (volume conservation), (B.2)
o0& ot
0P, . .
6—5 +R,F,,=0 (equation of motion), (B.3)

for 0<i< I tubes, 1 <k <K, solutes, where ¢ is the axial distance along the tube;
0<E<;<1; I, is the length of the ith tube; 0 C,, is the concentration of the kth
solute in the ith tube; F,, is the axial volume flow; D, is the diffusion coefficient of
the kth solute in the ith tube; J, is the transmembrane solute flux; ¢ is time; 4, is
the cross-sectional area of the tube; s, is the average net rate at which the kth
solute is being produced or destroyed by physical or chemical reaction; J,, is the
transmembrane volume flux (which is assumed to be approximately equal to the
water flux); P, is the hydrostatic pressure; and R, is the resistance to flow.
Transmural volume and solute flux is defined as follows:

Jw=hy [Z RT(qu—Cik)aik+P,—Pq], (B.4)
k

and

Jau=hy(Cy— Cpu )+ (1 =04) J(Cyu + Cu)/2
Ay

+—-—’
1+b,/Cy
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YOU ARE IN INITIALIZATIGN MODE .
VALID COMMANDS ARE

PB ME GO
SV PV RE 5K
RB PN HE
RV cpP 5T

DT

SF (o]
WHEN THEY ARE NEEDED, YOU WILL BE ASKED FOR VALUES FOR:
NVBL -~-NUMBER OF VARIABLES
NPAR---NUMBER OF PARAMETERS
TYPE XX? FOR INFO ON COMMAND XX.

YOU ARE IN COMMAND CONTROL MODE, VALID COMMANDS ARE:

LtS---LEAVE THE VARIABLE AS I7 IS
AI---ASSIGN EACH VARIABLE(I) INDIVIDUALLY
SB---INFORMATION ON VARIABLES AND DEFAULT VALUES
ST---RETURN TO INITIALIZATION MODE OR RUN MODE.
ONCE IN THE AI MODE:

LS---LEAVE THE VARIABLE THE SAME

$T---G0 ON TO THE NEXT VARIABLE.
ENTER THE VALUE ITSELF IF ALL VARIABLES(I) ARE TO HAVE
THE SAME VALUE.

YOU ARE IN RUN MODE.
VALID COMMANDS ARE:
SB

ME G0
RB PV RE T
SF PH HE LE
5K CP ST TP

DT cM ov
TYPE XX? FOR INFO ON COMMAND XX.

SET VECTOR-~-SV
YOU WILL BE ASKED TO INPUT INITIAL VALUES FOR THE VARIABLE
VECTOR X(I) AND THE PARAMETER VECTOR PARC(I).

READ VECTOR---RV
READ IN THE START VECTORS FROM A FILE. YOU WILL BE ASKED FOR THE
FILE NAME. THE FIRST TWO VALUES MUST BE NVBL, THEN NPAR, ONE PER
LINE, FORMAT I6. VECTOR VALUES WILL BE READ 5 PER LINE, FORMAT
D12.4,2X. CONTROL COMMANDS ARE NOT VALID--INCLUDE ALL VALUES.

SET BOUNDS---SB
YOU WILL BE ASKED TO INPUT VALUES(FORMAT D10.4,16 OR L5) FO
HHC(I)--~INTEGRAION STEP ALONG THE ARC LENGTH OF THE SOLUTIUN
LOCUS. -~-DEFAULT .1t
HMAX(I)---APPROXIMATE UPPER BOUNDS FOR INCREMENT OF X(I) IN ONE
INTEGRATION STEP. --DEFAULT 1,
EPS--~ACCURACY DESIRED IN NEWTON ITERAT!ONS CONVERGENCE CRITERION
IS: SUM OF THE ABSOLUTE VALUE OF THE CHANGE IN EACH
COMPONENT OF X IS <= EPS. --~DEFAULT .0001
NCORR---THE NUMBER OF NEWTON CORRECTIONS TQ GET BACK NEAR THE
CURVE. IF THE CRITERION IS NOT MET, THE STEP SIZE WILL BE
HALVED AND WILL TRY AGAIN. THIS WILL BE REPEATED NCORR

TIMES. ---DEFAULT ¢
NDIR(I)---DIRECTION OF CHANGE IN X(I)

1--~POSITIVE -1---NEGATIVE. ---DEFAULT 1
XUPP(I)---UPPER BOUNDS ON X(I). -~--DEFAULT «0.0
XLOWC(I)---LOWER BOUNDS ON X(I). ---DEFAULT -40.0

FACT---BIFURCATION CRITERION. CRITERION IS THAT THE INNER PRODUCT
OF PSI1 AND THE PARTIAL DERIVATIVE OF THE FUNCTION, F, WITH
RESPECT TO A PARAMETER IS <= FACT; WHERE THE SPAN OF PSIt
IS THE NULL SPACE OF THE DERIVATIVE OF F WITH RESPECT TO X.
ALSO, SIZE OF STEP TAKEN ON EITHER SIDE OF A BIFURCATION IN
SEARCH OF BIFURCATING BRANCH.

---DEFAULT .001
BSW---SET TRUE FOR BIFURCATION TEST ON CHANGE OF DIRECTION;
SET FALSE FOR BIFURCATION TEST ON CHANGE OF SIGN ONLY.
-~-DEFAULT FALSE
LPRNT-~-SET TRUE TO PRINT RESULT OF EACH NEWTON ITERATION.
---DEFAULT FALSE
THE ITH PARAMETER BOUND WILL BE READ IN AS THE BOUND FOR X(NVBL+I}

READ BOUNDS---RB
READ IN THE BOUNDS FROM A FILE. YOU WILL BE ASKED FOR THE FILE
NAME. THE FIRST TWO VALUES MUST BE NVBL AND NPAR, OKE PER LINE,
FORMAT 16. ALL INTEGER VALUES WILL BE IN FORMAT 16; REAL VALUES WILL
BE IN FORMAT D12.4; LOGICAL VALUES IN L5. ENTER REAL VECTOR VALUES
5 PER LINE, INTEGER VECTOR VALUES 10 PER LINE, 2X IN BETWEEN VALUES.
ENTER SCALAR VALUES ONE PER LINE. CONTROL COMMANDS ARE NOT VALID---
INCLUDE ALL VALUES. VALUES WILL BE READ IN THE SAME ORDER AS SB.

HELP---HE

---$

ST
IF IN INITIALIZATION MODE, COMPLETES THE RUN AND RETURNS TO THE
MONITOR. IF IN RUN MODE, RETURNS TO INITIALIZATION MODE

FIiGURE Al.
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PRINT BOUNDS---PB
PRINT OUT THE CURRENT VALUES OF THE BOUNDS.

PRINT VECTOR--~-PV
PRINT OUT THE VECTOR OF VARIABLES AND PARAMETERS.

PRINT NORM---PN
PRINT OUT THE NORM OF THE VARIABLE VECTOR AND PRINT OUT THE
PARAMETERS THAT ARE BEING FOLLOWED

GO
IN INITIALIZATION MODE DOES INITIAL NEWTON ITERATIONS TO GET NEAR

A ROOT.
IN THE RUN MODE---GO NP--- CALCULATE THE NEXT NP PGINT(S).
INITIAL DEFAULT FOR NP IS 1. THEN DEFAULT IS PREVIOUS NP.

RESTART---RE
READ IN A PREVIQUSLY STORED PGINT CREATED BY THE MEMORY CCMMAND.
YOU WILL BE ASKED FOR THE FILE NAME.
IF YOU WISH TO GET OUT OF THIS COMMAND, INPUT ST.

MEMORY~-~~ME
STORES THE CURRENT POINT AND STATUS IN A FILE WITH THE NAHE OF YOUR
CHOICE. IF YOU WISH TO GET OUT OF THIS COMMAND, INPUT
A MEMORY FILE WILL AUTOMATICALLY BE PRODUCED FOR PUINTS ON
BIFURCATED BRANCHES.

CHANGE PRINT---CP

ggusg%hL BE GIVEN THE OPTION TO PRINT QUT THE NORM, THE VECTOR,

SET FOLLOWING PARAMETERS-~--SF NPF
SPECIFY WHICH PARAMETER(S) TO FOLLOW, WHERE NPF ( <=5 )IS THE NUMBER
OF PARAMETERS. INDICES OF THE FOLLOWING PARAMETERS WILL BE
STORED IN IFOLOCI). IF IFOLO IS NOT INITIALIZED ALL PARAMETERS
MAY BE FOLLOWED. IF NPF=NPAR IFOLO WILL BE SEYT AUTOMATICALLY.
---DEFAULT VALUE FOR NPF = 1,
LS (LEAVE SAME) AND ST(STOP) ARE VALID, HOWEVER THEY WILL BE
IGNORED IF AN ERROR OCCURS.

COMMENT---CM NL
INSERT A COMMENT IN THE SESSION LOG, WHERE NL IS THE NUNBER OF LINES.
EACH LINE MAY BE 75 CHARACTERS LONG.---DEFAULT FOR NL =

DATA---DT
INPUT REAL VALUES FOR RDATA(1)-RDATA(5), AND INTEGER VALUES FOR
IDATAC1)-IDATA(5), FOR OPTIONAL USE IN THE FUNCTION SUBROUTI
TO USE THESE ARRAYS, THE FUNCTION SUBROUTINE MUST HAVE THE STATEHENT
COMMON/IDATA/RDATA(S), IDATA(S)

TURN---TU NP
FOLLOW THE PATH IN THE OPPOSITE DIRECTION.
NP IS THE NUMBER OF POINTS. ---INITIAL DEFAULT = 1. THEN DEFAULTY

BECOMES THE PREVIOUS VALUE FOR NP.

LEVEL STEPS---~LE NP
FOLLOW X(K) IN LEVEL STEPS ALONG THE CURVE.
NP IS THE NUMBER OF POINTS. ~--INITIAL DEFAULT = t; SUBSEQUENTLY THE
DEFAULT IS THE PREVIOUSLY USED VALUE;
INITIAL DEFAULT ON INCREMENT = HMAX;
INITIAL DEFAULT ON ITERATIONS = 10
IF K CHANGES OR ANY ERROR DCCURS, LEVEL MODE WILL STGP.

TARGET POINT-~-TP
FIND THE SOLUTION FOR A PARTICULAR VALUE OF X(K). YOU WILL
BE ASKED FOR THE VALUE, TRGPT. 1IF K CHANGES OR ANY ERROR OCCURS,
TARGET POINY MODE WILL STOP.

OUTPUT CURRENT VECTOR---0V
STORES THE CURRENT POINT IN A BINARY FILE WITH A NAME OF YQUR CHOICE.
EACH RECORD MAY BE READ AS FOLLOWS:

READ(FILENAME) (X(I),I=t, NX 0T1)
WHERE NXTOT=NVBL+NPAR. TRIS IS USEFUL FOR SAVING DATA FOR PLOTTING.

SET K-~-SK
RESTRICTS FOLLOWING TO VARIABLE K, FOR 0 < K <= NXTOT.
YOU WILL BE ASKED FOR
K = 0, FREES CONKUB TO SELECT K (DEFAULT).
TURNING POINT OR BIFURCATION CALCULATIONS WILL FREE THE SELECTION OF K.

FIGURE A2.
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for 1<i< I, 1<k<K, where h,, is the hydraulic permeability coefficient of the ith
tube for the kth solute; A, is the solute permeability of the ith tube for the kth
solute; R is the gas constant; T is the absolute temperature; subscript ¢ indicates an
interstitial variable (for cortex ¢ =c and for medulla ¢ =0); 6, is the Staverman
reflection coefficient of the wall of the ith tube for the kth solute. The last term in
Eq. (B.5) defines the metabolically driven transport, which is assumed to obey
Michaelis—-Menten kinetics; a, is the maximum rate of transport, and b, is the
Michaelis constant. Tubes i, 1 <i< I, refer to the nephrons and vasculature of the
model. In general, we assume that s, =0, for all / and &; that A, = constant, for all
i; and that D, =0 for 1 <i</[Iand all £.

TABLE BI

Normalized Parameters”

Tube® h, R(x10%) a 7, hy h,

G 1400 2 0 1 1 1 R,=105x10""*
PGC 300 28.5 0 1 4 4 Rg=0.1x10""
DVR1 100 2000 0 1 1000 1000 Ry=250x10"*
DVR2 100 28.5 0 1 1000 1000 De,=10x10"3
CAVR 100 49 0 1 100 100 Dg,=10x10->
AVR1 100 2000 0 1 1000 1000

AVR2 100 245 0 1 1000 1000

BC 0 0 1 — 0 0

PT — 7 — — — — B=05

DHL 50 10 1 — 0 0

AHL1 0 10 1 — 0.05 a=13, b=01
AHL2 0 10 1 —  0.05,0.85¢ a=0.6,0,c b=0.1
DNI1 0.2 6 1 — 0 0 a=045  b=10
DN2 0.2 6 1 — 0 0 a=0.3, b=10
CD 0.44 6 1 — 0 0, 0.02¢

RP 0.05 0 1 — 0 0 E=0.

% h,, hydraulic permeability; R, resistance to flow; o, Staverman reflection coefficient for filtered
solutes; o, reflection coefficient for large solute not filtered; 4, salt permeability; 4,, urea permeability;
R,, flow resistance afferent to glomerulus; R, flow resistance efferent to glomerulus; R,, resistance to
flow in the interstitium; Dy,, diffusion constant for salt in the interstitium; B, fraction of filtrate reabsor-
bed in the proximal tubule; a4, maximum rate of transport; b, Michaelis constant; E, fraction of collecting
duct outflow entering renal pelvis,

® G, glomerulus; PGC, post glomerular capillary; DVR1, descending vas rectum for first (cortical)
nephrovascular unit; CAVR, cortical ascending nephrovascular unit; AVR2, ascending vas rectum for
second (juxta-medullary) nephrovascular unit; BC, Bowman’s capsule; PT, proximal tubule; DHL,
descending loop of Henle’s limb, AHL, ascending loop of Henle’s limb; DN, distal nephron; CD,
collecting duct; RP, renal pelvis.

¢ The first value refers to the outer medulla where 0 < x <0.5; the second refers to the inner medulla,
where 0.6 < x < 1. For 0.5 <x < 0.6 the value varies linearly.

4 The first value holds for 0 < x<0.4; the second holds for 0.6 <x<1. For 0.4 < x<0.6 the value
varies linearly.

581/63/1-6
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TABLE BII

Normalized Boundary Values

[NaCl]anerial 1.0
[Urea]ar\enal 0.05
[Large proteins ], ieriar 0.0038
Panerial 1.3x10 2
Pvenous 1.0x1073
Prtadder 144 x 1073

In the medullary region, water and mass conservation require that
Jouol &)= = J3(&) (B.6)
and

JOk(é)z “Z‘L‘k(é) (B'7)

for 0<é<1, 1 €k <K In the cortex

!
1= | T dz= ~Fo,(0) (BS)
and
ac,
Jo= —Vc—at‘—"—FOk(O), (B.9)

where V_ is the volume of the cortical interstitium and 0 <k < K.

Equations (B.1)-(B.3) are discretized using a scheme that is centered in space
and backward in time [13]. The interstitial variables: Pg, Cgk and Fgv; the
boundary values for each nephron: Fg(1), Pgc and Fppg(1); plus Pcp(1) and
Frp,(n, + 1) are the coordinates used for continuation. A connected component of
steady state solutions is shown in Fig. 7, the values of the model parameter used are
given in Table BI, and Table BII contains the boundary data for this model that
has a ratio of three short nephrons for every long one.

APPENDIX C
Figures C1-C3 illustrate a portion of the session dialog for the solution of the

first sample problem given in Section 4. For brevity, we show the calculation of the
first three sample points of Figs. 1-3 beginning at « =0 and the computation at the



CONVERSATIONAL PATH-FOLLOWER

15:39 13-Fab-84

XHHK
CONKUB ALGORITHM FOR PATH FOLLOWING

VERSION 122083

TYPE HE FOR HELP.
CH

*%%xUsa the 5V command to enter initial valuas for the variablas and paramaeters.
sV

X =
0.0000000D+00 0.0000000D+00

PAR =
0.0000000D+00

CcM
¥%¥%Use the SB command to initialize the boynds and control parameters.
SB

HH =
2.5000000D-01 2.50600000D-01

HMAX =
2.5000000D-01 2.5000000D-01

EPS = 1.0000000D-04
NDIR =
1 1 1 1
XUPP =
1.0000000D+01 1.0000000D+01
XLOW =
=1.0000000D+00  ~1.0000000D+00
FACT = 1.0000000D-03
BSW = F
LPRNT=  F

0.0000000D+00

2.5000000D-01

2.5000000D-01

1.0000000D+01

~1.0000000D+00

%xx%Use the ME command to save thae initial data.

M

START

CM

é**XBegin the computation.
0

THERE ARE 3 VARIABLES
THERE ARE 1 PARAMETER(S)
HH =

2.5500000D-01 2.5000000D-01

HMAX =
2.5000000D-01 2.5000000D-01

EPS 1.0000000D-04
NCOR 5
NDIR =
1 1 1 1
XUPP =
1.0000000D+01 1.0000000D+01
XLOW =
-1.0000000D+00  -1.0000000D+00
FACT = 1.0000000D-03
BSW=_F
LPRNT= F
IFOLO= 1
RDATA=
0.0000000D+00 0.0000000D+00
IDATA=
0 0 ] 0

X =
0.0000000D+00 0.0000000D+00

PAR =
0.0000000D+00

N

.5000000D-01

N

.5000000D-01

-

.0000000D+01

.0000000D+00

0.0000000D+00

0.0000000D+00

FiGure C1.

3.

1.

w

-

-

0000000D-01

0000000D-01

1000000D+00

0000000D-01

.0000000D-01

.0000000D-01

.1000000D+00

.0000000D-01

.0000000D+00

0.0000000D+00
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THE VECTOR NORM IS: 0. 0000D+00, PAR( 1)Y= 0.0000D+00
CONKUB : NEWTON ITER 1 ERR 0.000D+00, | 1Xnaw-Xoldl| = 0.000D+00
CONKUB: NEWTONS CONVERGED; K= S
CH
;cilSave data in a form suitable for plotting using the OV command.
LTHOV
*¥x¥Continue the calculation.
GO0 1
THE VECTDR NORM IS: 2. 0544D 01, PAR( 1)= 5.5194D-02

CONKUB NEWTON ITER 6.643D-07, | | Xnew-Xoldl] = 5.610D-07
CONKUB : NENTDNS CONVERGED, K= 1
DET= 0.0898%2%x% 4 K= 1
PV
X =
1.4118807D-01 1.1853171D-0t 9.0683825D-02

PAR
5.51942641D-02
ov

M

E;XXChangﬂ the form of tha output typad at the terminal using the CP command.
CcM

;gxngniinun the calculation.

X
4.3382268D-01 2.2020534D-01t 1.09064143D-01

PAR =
2.1059100D-01

CONK : NEWTON ITER 4 ERR = 3.362D-08, |1 Xnaw-Xold!| = 4.623D-08
CONKUB NEHTONS CONVERGED; K= 1

DET= 0. 126 1%2%x% 4 K= 1t

(For braevity we omit most of the computation and
show the last two points computed on the curva.)

20 1
3.76470761D-01 2.5266944D+00 4.3248498D-01

PAR =
9.9995907D-01

CONKUB : NEWTON ITER 1 ERR = 7.829D-16, | | Xnaw-Xoldl | = 3.081D-16
CONKUB: NEWTONS CONVERGED; K= 3
DET= 0.1323%2%% G K= 3
oV
CM

X¥%¥Look at the current bounds using tha PB command.

THERE ARE 3 VARIABLES
THERE ARE 1 PARAMETER(S)

HH =
1.0000000D-03 1.0000000D-03 1,0000000D-03 1,0000000D-03
HMAX =
1.0000000D-04 1.0000000D-06 1.0000000D-04 1.0000000D-04%
EPS = 1.0000000D-08
NCORR= 5
«NDIR =
- 1 -1 1 1
xupp =
1.0000000D+01 1.0000000D+01 1.0000000D+01 1.1000000D+00
XLOW =
-1.0000000D+00 -1.0000000D+00 -1.0000000D+00 =-1.0000000D-01

Figure C2.
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FACT = 1.0000000D-03
BSH= F
LPRNT= F
IFOLO= 1
RDATA=

0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00 2.5400000D+02
IDATA=

[ [ 0 0 0

CM
*%¥¥Usa the 5B command to reduce the step size allowed.
SB

HH =

5.0000000D-04 5.0000000D-06 5.0000000D-04 5.0000000D-04
HMAX =

5.0000000D-05 5.0000000D-05 5.0000000D~05 5.0000000D-05
gﬂ 1

3.7472626D-01 2.5266768D+00 4.32564417D-01

PAR =
9.9999732D-01

CONKUB : NENTON ITER 2 ERR = 6.387D-16, |[Xnew-Xold!| = 6.763D-16
CONKUB: NEWTONS CONVERGED; K= 3
DET= 0.1323%2%x 4 K= 3
ov
ST
ST
FiGure C3.

last two points approaching « = 1. See Appendix A for a detailed description of the
commands and other mnemonics used.
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